
International Journal of Scientific & Engineering Research, Volume 7, Issue ƕƖȮɯ#ÌÊÌÔÉÌÙɪƖƔƕƚɯɯ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Performance Evaluation with the help of RED Queue in the Buffer

Management Mechanism

Rakesh kumar

REC, Ambedkar Nagar

Email Id-rakesh.knit1@gmail.com

Dr.Manisha Manjul

G.B.Pant Govt. Engineering College,New Delhi

Email Id-manishamanjul@gmail.com

Abstract— we introduce the buffer management mechanism in the computer network which is important to prevent the loss of packet and delay in the

network for efficient and reliable delivery of packet. So the proposed scheme is based on the observation that when congestion control is implemented at

the source, most of the loss occurs at the source. We evaluate the performance of buffer management on the basis of network parameters like

bandwidth, queue size, packet size and transmission delay. We take the different type of scenario for finding the optimal solution of the problem which

comes in the networks.

Index Terms— Buffer management mechanism, red queue, delay, bandwidth, queue management, Cogetion control, scheduling in queue,

drop tail.

—————————— ——————————

1 INTRODUCTION

Video enable applications are mostly used in our life without
any delay, which also improve the quality of video. The needs
for a central buffer management to achieves better memory
utilization by enabling video stream sharing across
components and to all network condition.
We will implement a queue management [1] scheme to
manage the buffer at destination for video enable services
which carries huge amount of data through network channel.
Video data is generated at source which it reached to
destination through various nodes and links. So, there may be
delay, packet loss and jitter. To provide the better service at
destination, we require a less delay, less amount of packet loss
and less jitter. We are implementing a buffer management
mechanism which care about packet loss and jitter.

1. BUFFER MANAGEMENT

It is a technique which is used to improve the delivery of the
packet in the network .We can improve these with the help of
implementing different queue in the network. Congestion in a
network may occur if the load on the network is more than the
carrying capacity of the network [6, 7]. Congestion in a
network or internetwork occurs because routers and switches
have queues- buffers that hold the packets before and after
processing. It degrades quality of service and also can lead to
delays, lost data. Congestion can be brought on by several

factors.
If all of a sudden, streams of packets begin arriving on three or
four input lines and all need the same output line, a queue will
build up. If there is insufficient memory to hold all of them,
packet will be lost. This problem cannot be solved by
increasing memory, because Nagle discovered that if routers
have an infinite memory, congestion gets worse, not better.
Slow processor can also cause congestion. If routers CPU’s are
slow at performing the tasks required, queues can build up,
even though there is excess line capacity. Similarly, low
bandwidth lines can also cause congestion. Network is greater
than the capacity of the network-the number of packets a
network can handle.

2. QUEUE MANAGEMENT

As we have seen, traffic phase effects occur when different
flows of packet from different source and we can see different
performances of the network. So we can solve this problem by
implementing queue and solved by simply increasing the
buffer size in the router. It seems that these effects would not
occur or could at least be significantly diminished by
increasing the maximum queue length. Since a queue is only
meant to compensate for sudden traffic bursts, one may
wonder what would happen if the queue length was endless.
Of course, there is no such thing as an endless buffer, but it
could be quite long [6, 7].

2.1 NEED FOR BUFFER

Congestion occurs when resource demands exceed the
capacity [2, 3, and 4]. As users come and go, so do the packets
they send; Internet performance is therefore largely governed

————————————————
*Rakesh Kumar, Department of Information Technology, Rajkiya
Engineering College, Ambedkar Nagar (U.P) – 224 122, India (e-mail:
rakesh.knit1@gmail.com
*Manisha Manjul,Department of Computer Science and
Engineering,GovindBallabh Pant Govt engineering college,New
Delhi,(Email-id-manishamanjul@gmail.com)

1642

IJSER

http://www.ijser.org/
mailto:-rakesh.knit1@gmail.com
mailto:manishamanjul@gmail.com

International Journal of Scientific & Engineering Research Volume 7, Issue ƕƖȮɯ#ÌÊÌÔÉÌÙɪƖƔƕƚɯɯ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

by these inevitable natural fluctuations. Would it make sense
to connect their Internet gateway option for now because this
link is cheaper and suffices most of the time.
In this case, the gateway would see occasional traffic spikes
that go beyond the capacity limit as a certain number of
customers use their maximum rate at the same time. Since
these excess packets cannot be transferred across the link,
there are only two things that this device can do- buffer the
packets or drop them.
Network Congestion Control: Managing Internet Traffic
limited in time, standard Internet routers usually place excess
packets in a buffer, which roughly works like a basic FIFO
(‘First In, First Out’) queue and only drop packets if the queue
is full [3]. The underlying assumption of this design is that a
subsequent traffic reduction would eventually drain the
queue, thus making it an ample device to compensate for short
traffic bursts. Also, it would seem that reserving enough
buffers for a long queue is a good choice because it increases
the chance of accommodating traffic spikes.
There are however two basic problems with this:
1. Storing packets in a queue adds significant delay,
depending on the length of the queue.
2. The consequence of the first problem is that packet loss can
occur no matter how long the maximum queue, because of the
second problem, queues should generally be kept short, which
makes it clear that not even defining the upper limit is a trivial
task.

2.2 PACKET SCHEDULING IN QUEUE

Queues represent locations where packets may be held (or
dropped). Packet scheduling refers to the decision process
used to choose which packets should be serviced or dropped.
Buffer management refers to any particular discipline used to
regulate the occupancy of a particular queue. At present,
support is included for drop-tail (FIFO) queuing, RED buffer
management, CBQ (including a priority and round-robin
scheduler), and variants of Fair Queuing including, Fair
Queuing (FQ), Stochastic Fair Queuing (SFQ), and Deficit
Round-Robin (DRR). In the common case where a delay
element is downstream from a queue, the queue may be
blocked until it is re-enabled by its downstream neighbour.
This is the mechanism by which transmission delay is
simulated. In addition, queues may be forcibly blocked or
unblocked at arbitrary times by their neighbours (which is
used to implement multi-queue aggregate queues with inter-
queue flow control). Packet drops are implemented in such a
way that queues contain a “drop destination”; that is, an object
that receives all packets dropped by a queue.

2.3 FACTOR RESPONSIBLE FOR OCCURRENCE OF

CONGESTION

Factor responsible for occurrence of congestion for that we
need buffer Limited memory space, channel bandwidth,
router capacity load of network, link failure, heterogeneous
channel bandwidths the same key forcing the network to stuck

into congestion. Detailed discussions of these factors are given
below.

2.3.1 EFFECT OF BUFFER SPACE

The amount of buffer space given at a node is limited, the
amount of information that can be stored at the node. For the
case sufficient buffer is available more and more packets
received at the node may accumulate and get transmitted later
on. Here, the packets may suffer very large delay and
subsequently leads to congestion. However for lower buffer
space the packet may drop very frequently when load is
increased and have a lower throughput. This is because
packets have less room to wait for their chance. Thus neither
using very large amount of buffer at node nor very less
amount buffer is able to reduce congestion for all the case for
the application have random load higher buffer size may be
beneficial whereas medium range buffer is preferred for
constant load the effect of channel bandwidth.

2.3.2 EFFECT OF CHANNEL BANDWIDTHS

How Buffer (queue) control the packet in the network .How
one design a mechanism could that automatically and ideally
tunes the rate of the flow from sender to receiver .In order to
answer this question, we should take a closer look at the
elements involved.
• Traffic originates from a sender; this is where the first
decisions are made (when to send how many packets).For
simplicity, we assume that there is only a single sender at this
point.
• Depending on the septic network scenario, each packet
usually traverses a certain number of intermediate nodes.
These nodes typically have a queue that grows in the presence
of congestion; packets are dropped when it exceeds a limit.
• Eventually, traffic reaches a receiver. This is where the final
(and most relevant) Performance is seen – the ultimate goal of
almost any network communication code is to maximize the
satisfaction of a user at this network node. Once again, we
assume that there is only one receiver at this point, in order to
keep things simple. Traffic can be controlled at the sender and
at the intermediate nodes; performance measurements can be
taken by intermediate nodes and by the receiver.

2.3.3 ASSUMPTION OF QUEUE LENGTH

Choosing the right queue length is essential for the
performance of any computer network.
There are two reasons for this.
First, the source behaviour that we have so far taken into
consideration relies on packet loss as a congestion indicator –
thus, the rate of sources will keep increasing until the queue
length grows beyond its limit, no matter how high that limit
is.
Second, a queue can always overflow because of the very
nature of network traffic, which usually shows at least some
degree of self-similarity.
There is another reason why just picking a very large number
for the maximum queue length is not a good idea: queuing

1643

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue ƕƖȮɯ#ÌÊÌÔÉÌÙɪƖƔƕƚɯɯ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

delay is a significant portion in the overall end- to-end delay,
which should be as small as possible for obvious reasons (just
consider telephony – delay is quite bothersome to users in this
application). Remember what I said Queues should generally
be kept short. The added delay from queues also negatively
influences a congestion control algorithm, which should
obtain feedback that reflects the current state in the network
and should not lag behind in time.
After this discussion, we still do not know what the ideal
maximum queue length is; it turns out that the proper tuning
of this parameter is indeed a tricky issue.
Let us look at a single flow and a single link for a moment. In
order to perfectly saturate the link, it must have c × d bits in
transit, where c is the capacity (in bits per second) and d is the
delay of the link (in seconds). Thus, from an end-system
performance perspective, links are best characterized by their
bandwidth × delay product.
 On the basis of this fact and the nature of congestion control
algorithms deployed in the Internet, a common rule of thumb
says that the queue limit of a router should be set to the
bandwidth × delay product, where ‘bandwidth’ is the link
capacity and ‘delay’ is the average RTT of flows that traverse
it.

3. BUFFER MANAGEMENT MECHANISM

3.1 Source Mechanism

Buffer management mechanism is used to maintain the flow of
packet in the network. In this, the queue mechanism is
implemented at the source which has limited size to maintain
the delay between source and destination. The packets arrive
in the network and get enqueue in the queue and dequeue. If
the buffer size is full the packet will discarded. So for
extensive simulations we infer that for multimedia
transmission into a TCP based network, most loss occurs at
the point of transmission i.e. the source, and not at the nodes
inside the network [7].
This is contrary to the belief that the packet loss in the network
due to congestion is the major contributor to the total loss a
TCP flow suffers. Our simulations show that in response to
congestion the transmission queues at the sources increase
which finally leads to packet drops at the source and it is this
dropping at the source that is the major contributor to the
aggregate loss of the flow.
In this section we propose a simple buffer management
strategy for evaluating the buffer management performance.
Packets produced by the source are stored in the buffer prior
to transmission.

3.2 MECHANISM

In this paper we have discuss many algorithm which is used
to prevent the packet loss the packet, some of them are RED
and Drop Tail [2, 11]. And we also discuss the flowchart and

working of the algorithm which are given below.

Drop Tail

Tail Drop or Drop Tail, is a simple queue management [1]
algorithm used by Internet routers to decide when to drop
packets. In contrast to the more complex algorithms like RED
and WRED, in Tail Drop all the traffic is not differentiated.
Each packet is treated identically. With tail drop, when the
queue is filled to its maximum capacity, the newly arriving
packets are dropped until the queue has enough room to
accept incoming traffic as we can see in figure1.

Fig.1- Flow Chart of Drop Tail Algorithm

The name arises from the effect of the policy on incoming data
grams. Once a queue has been filled, the router begins
discarding all additional data grams, thus dropping the tail of
the sequence of data grams. The loss of data grams causes the
TCP sender to enter slow-start, which reduces throughput in
that TCP session until the sender begins to receive
acknowledgements again and increases its congestion
window. A more severe problem occurs when from multiple
TCP connections are dropped, causing global synchronization,
i.e., all of the involved TCP senders enter slow-start. This
happens because, instead of discarding many segments from
one connection, the router would tend to discard one segment
from each connection.

Drop Tail: The working of drop tail algorithm with the help of
flow chart we can see step by step:

1. If (No Of Packet Incoming>Channel Bandwidth){
2. Then Check Buffer Size}
3. else if(buffer size >= size of packet){
4. Then enqueue the packet
5. Else drop the packet}
6. If (noof incoming input <channel bandwidth){
7. Then packet enter the channel}

Flow Random Early Drop
If it is acceptable to maintain per-flow state because the
number of flows is boundedand a large amount of memory is
available, fairness can be enforced by monitoring all
individual flows in the queue and the result can be used to
make appropriate decisions.

This is the approach taken by flow random early drop this
mechanism, which is another incremental RED enhancement,
always accepts flows that have less than a minimum threshold

minq packets buffered as long as the average queue size is
smaller than maxth. As with standard RED, random dropping
comes into playonly when the average queue length is above

1644

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Queue_%28data_structure%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Router
http://en.wikipedia.org/wiki/Packet_%28information_technology%29
http://en.wikipedia.org/wiki/Random_early_detection
http://en.wikipedia.org/wiki/Weighted_random_early_detection
http://en.wiktionary.org/wiki/differentiation#Pronunciation
http://en.wikipedia.org/wiki/Packet_%28information_technology%29
http://en.wikipedia.org/wiki/Packet_%28information_technology%29
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Slow-start
http://en.wikipedia.org/wiki/Acknowledgement_%28data_networks%29
http://en.wikipedia.org/wiki/Global_synchronization
http://en.wikipedia.org/wiki/Protocol_data_unit

International Journal of Scientific & Engineering Research Volume 7, Issue ƕƖȮɯ#ÌÊÌÔÉÌÙɪƖƔƕƚɯɯ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

minth, but with FRED, it only affects flows that have more
than minq packets in the queue. Note that this type of check
requires the mechanism to store per-flow state for only the
flows that have packets in the queue and not for all flows that
ever traversed the link, and thus, the required memory is
bounded by the maximum queue length.
Random Early Detection (RED)
Red algorithm provides the mechanism which mange the
transfer of packet from source to destination through multiple
nodes and the mechanism called buffering of the packet into
the queue. As in the case of the Internet, the chosen entity was
the router describes a mechanism called Random Early
Detection (RED), which is now widely deployed and makes a
decision to drop a packet on the basis of the average queue
length and a random function as well as some parameters
called probability of dropping the packet. RED is a popular
example of a class of so-called active queue management
(AQM) [2].
This algorithm calculates the average queue length, if it is
greater than the maximum then packet drop. Randomness
comes into play only when the average queue length is
between minth and maxth – then, the probability of dropping
a packet will be between zero and the maximum marking
probability maxp, and it will directly be proportional to the
average queue length.
In other words, when the average queue length grows beyond
minth, the marking probability rises linearly from zero to
maxp, which is when the average queue length will grow
beyond maxth and all packets will be marked. Where avg is
the average queue length estimate, q is the instantaneous
queue length and wq is a weighting factor that controls how
fast the moving average adapts to fluctuations. Then, it is
compared to two thresholds called minth and maxth. If the
average queues size is less than the minth, maxth.
 These values depend on the desired average queue size. In
other words, setting this parameter to a small value will lead
to a small queue (and thus short delay). On the other hand, the
parameter minth depends on the burstiness of traffic – if
fairlybursty traffic should be accommodated, it must be set to
a rather large value – and at the same time, (maxth − minth)
should not be too small to allow for the randomness to take
effectmaxp: This parameter controls how likely it is for a
packet to be discarded when the average queue length is
between minth and maxth. Complete mechanism of RED
given as a flow chart in figure2.
RED queue: The algorithms of red queue in flow chart figure2
given in step by step.
1 calculate average length queue
2. If (average length >=threshold) or

 Probability to drop the packet is high

3. ElseIf (Average length <=threshold) or

Probability value is low then

4. Enqueue packet

5. Packet sent to network

Fig.2-Flow Chart of Red Algorithm

Adaptive RED

This is the underlying idea of Adaptive RED [2], which was
originally described on the basis of the dynamics of the queue
length, the maxp parameter is varied. This makes the delay
somewhat more predictable because the average queue length
is under the control of this parameter. When the network is
generally lightly loaded and maxp is high, the average queue
length is close to minth, and when the network is heavily
congested and maxp is low, the average queue length is close
to maxth.
Dynamic-RED

Dynamic-RED (DRED) is a mechanism that stabilizes the
queue of routers; by maintaining the average queue length
close to a fixed threshold, it manages to offer predictable
performance while allowing transient traffic bursts without
unnecessary packet drops. The design of DRED is described in
it follows a strictly control-theoretical approach. The chosen
controller monitors the queue length and calculates the packet
drop probability using an integral control technique, which
will always work against an error in a way that is proportional
to the time integral of the error, thereby ensuring that the
steady-state error becomes zero. The error signal that issued to
drive the controller is filtered with a EWMA process, which
has the same effect as filtering (averaging) the queue length –
just like RED, this allows DRED to accommodate short traffic
bursts.
Stabilized RED

Stabilized RED (SRED) also aims at stabilizing the queue
length, but the approach is quite different from DRED: since
the queue oscillations of RED are known to often depend on
the number of flows, SRED estimates this number in order to
eliminate this dependence. This is a achieved without storing
any per-flow information, and it works as follows: whenever
new packet arrives, it is compared with a randomly chosen
one that was received before. If the two packets belong to the
same flow, a ‘hit’ is declared, and the number of ‘hits’ issued
to derive the estimate. Since the queue size should not limit
the chance of noticing packets that belong together, this
function is not achieved by choosing a random packet from
the buffer – instead, a ‘zombie list’ is kept [9, 10].

1645

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue ƕƖȮɯ#ÌÊÌÔÉÌÙɪƖƔƕƚɯɯ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

4. IMPLEMENTATION OF QUEUE MANAGEMENT

NS-2 is an object oriented simulator, written in C++, with an
OTcl interpreter as a frontend. The simulator supports a class
hierarchy in C++ (also called the compiled hierarchy in this
document), and a similar class hierarchy within the OTcl
interpreter. NS-2 uses two languages because simulator has
two different kinds of things it needs to do. On one hand,
detailed simulations of protocols require a systems
programming language which can efficiently manipulate
bytes, packet headers, and implement algorithms that run
over large data sets. For these tasks run-time speed is
important and turn-around time (run simulation, find bug, fix
bug, recompile, re-run) is less important. NS-2 meets both of
these needs with two languages, C++ and OTcl. C++ is fast to
run but slower to change, making it suitable for detailed
protocol implementation. OTcl runs much slower but can be
changed very quickly (and interactively), making it ideal for
simulation configuration. ns (via tclcl) provides glue to make
objects and variables appear on both languages simulator:
The overall simulator is described by a Tcl class Simulator. It
provides a set of interfaces for configuring a simulation and
for choosing the type of event scheduler used to drive the
simulation.
A simulation script generally begins by creating an instance of
this class and calling various methods to create nodes,
topologies, and configure other aspects of the simulation.

4. SIMULATION ENVIRONMENT

Parameter Used
The initial parameters are used in the following tabel:

Table 1: Parameters Used

S.No. Parameters Quantity

1 Bandwidth(Mb) 20

2 Queue size 19

3 Link Delay 30

4 Packet size 5000

5 Source Rate 1.5Mb

6 Simulation Time 5 minute

So, all initial parameters shown in the above table 1 which is
taken for our simulation. The bandwidth between link node 0
to node 3, node 1 to node 3 and node 2 to node 3 is 20Mb,
node 3 to node 4 is10Mb and node 4 to node5, node 4 to node
6 is 20 Mb and delay in all links is 30ms. The initial queue size
assumed is 4 packets. But the bandwidth, queue size and
transmission delay varies from scenario to scenario.
Network simulator-2 (NS-2)
So for creating the environment for buffer management in
Queue exist in NS-2 as given in figure3.
In this we go to the NS-allinone, ns-2.34 then in queue in
which drop tail and read queue exist.

Fig.3-Simulation topology

5. RESULT AND DISCUSSION

In first scenario we consider variation in bandwidth only in
link n3-n4 because we are implemented RED queue on this
link. In which we keep changing the bandwidth i.e.10Mb,
20Mb, 24Mb. And all the parameter remains fixed i.e. queue
size is 4 packets and the transmission delay is 30ms in this, we
consider the queue size minimum. Networks have congestion
because we provide the insufficient bandwidth to the link and
not enough queue size.
So from this we have analyzed that the number of packet loss
is more and less number of packet is received. We have
analyze the other variation of parameter in next scenario i.e.
queue size and transmission delay.
Table 2: Variation in Bandwidth.

S.No. Link Bandwidth
(Mb)

Queue size Transmission
Delay

Packet
Loss

Packet
Receive

Queued
Packet

Avg
Queued
Packet

1 N3-N4 10 4 30 206 416 2000 205

2 N3-N4 20 4 30 256 372 2013 92

3 N3-N4 24 4 30 328 336 1970 64

We only show the graph of serial number 3 in which link n3-
n4 have bandwidth is 24Mb.

1646

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue ƕƖȮɯ#ÌÊÌÔÉÌÙɪƖƔƕƚɯɯ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Fig.4- Time Vs Quaeue Size at Different Bandwidth
In second scenario we consider the variation in queue size
only in link n3-n4 because we are implemented RED queue on
this link. In which we keep changing the queue size i.e.10, 15,

and 19 packets respectively. And all the parameter remain
fixed i.e. bandwidth is 24 Mb and the transmission delay is
30ms.In this we varies the queue size. Networks have
congestion because we provide the traffic on to the link.
So from this we have analyzed that the number of packet loss
is less from previous case number of packet is received is more
we see it in serial no3 link n3- n4. We have analyze the other
variation of parameter in next scenario i.e. transmission delay.

Table3: Variation between Queue sizes from initial parameter.

S.no. Link Bandwidth(Mb) Queue
size

Transmission
delay

Packet
Loss

Packet
Receive

Queued
Packet

Avg
Queued
packet

1 N3-N4 24 10 30 394 303 3980 105

2 N3-N4 24 15 30 360 320 3960 100

3 N3-N4 24 19 30 80 829 3970 107

We only show the graph of serial number 3 in which link n 3- n 4 have bandwidth is 24 Mb and queue size is 19 packets.

Fig.5-Time Vs Queue Size at Different Queue Size

Fig.6-Time Vs Queue Size at Different Transmission Delay

In third scenario we consider the variation in transmission
delay only in link n 3-n 4 because we are implemented RED
queue on this link. And every packet provided with
transmission time. In which we keep changing the
transmission delay
 i.e.10ms, 20ms, 30ms. And all the parameter remains fixed i.e.
Bandwidth is 24Mb and queue size is 19 packets. In this we
varies the transmission time to analyze the result of packet

loss in the network.
Table4: Variation between Transmission Delay

So from this we have analyzed that no packet loss occurs in
the network and the number packet received to the
destination side is maximum. So we have analyzed that when

we are taking the bandwidth 24Mb, queue size 19packet and
transmission delay is 30ms, so no packet loss occur in the
network. Number of packet queued is 4000 and average

S.no. Link Bandwidth(Mb) Queue
size

Transmission
delay

Packet
Loss

Packet
Receive

Queued
Packet

Avg
Queued
packet

1 N3-
N4

24 19 10 No 829 3950 104

2 N3-
N4

24 19 20 No 829 3985 102

3 N3-
N4

24 19 30 No 829 4000 102

1647

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue ƕƖȮɯ#ÌÊÌÔÉÌÙɪƖƔƕƚɯɯ
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

queued is 102 packet.
 We only show the graph of serial number 3 in which link n3-
n 4 has bandwidth is 24Mb and queue size is 19 packets and
transmission delay is 30ms. We can analyze it from the graph.
So from the entire scenario we make the Comparison between
number Packet Loss and number of Packet Received. This
comparison provides the solution of the problem which occurs
in the network that is packet loss is minimized as in the
previous scenario.

Table5: Comparison between packet loss and packet received

So the parameter which provides the solution is considered
are bandwidths is 24Mb, queue size is 19 Packet and
transmission delay is 30ms. In this simulation no packet losses
occur in the network which is optimum solution of this
problem.
So the parameter which provides the solution is considered
are bandwidths is 24Mb, queue size is 19 Packet and
transmission delay is 30ms. In this simulation no packet losses
occur in the network which is optimum solution of this
problem.

4. CONCLUSION

We evaluated the performance of buffer management on the
basis of network parameters like bandwidth, queue size, and
transmission delay. We take the different type of scenario for
finding the optimal solution of the problem which comes in
the networks .The problem is in the network like packet loss,
congestion and delay.
We discuss the algorithm Red and Drop tail and by applying
this algorithm we maintain the loss of the packet in the
network. We finally reach on the result in the different-
different scenarios that provide efficient way for transmission
in network using buffer management.

REFERENCES

[1] Arash Dana and Ahmad Malekloo “Performance Comparison between

Active and Passive Queue Management” IJCSI International Journal of

Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010.

[2] Hussein Abdel-jaber “Performance study of Active Queue Management

methods: Adaptive GRED, REDD, and GRED-Linear analytical model”

Journal of King Saud University –

[3] Computer and Information Sciences Volume 27, Issue 4, October 2015, Pages

416–42.

[4] Shensheng Tang and Wei Li, “QoS Provisioning and Queue Management in

Mobile Ad hocNetworks”in Wireless Communications and Networking

Conference, pp.400-405, April 2006. [4]Andrew S. Tanenbaum fourth edition

“Computer Network” Prentice Hall, May 6, 2011

[5] Behrouz Forouzan's fifth edition”Data Communication and Network”

Science Engineering & Math -July 1, 2012.

[6] S. Rajeswari, Dr.Y.Venkataramani “Congestion Control and QOS

Improvement for AEERG protocol in MANET

[7] ” International Journal on AdHoc Networking Systems (IJANS) Vol.2, No.1,

January 2012.

[8] Karan Singh, Rama Shankar Yadav and Grish Kumar Gupta “Effective

Queue Management for Layered Multicast” Accepted for publication in IEEE

Bangalore Section -18th Anual Symposium on Emerging Needs in

Computing, Communication, Signals and Power ENC2SP 2009, Bangalore 29

August 2009.

[9] Ivan V. Baji´c, Omesh Tickoo, Anand Balan, Shivkumar Kalyanaraman”

Integrated end-end buffer management and congestion control for scalable

video communications:” in December 12, 2002

[10] Shalini batra ,Yan bai” Packet buffer management for high speed network

Interface Card ”

[11] Z. Miao and A. Ortega, ”Optimal scheduling for streaming of scalable

media,” Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific

Grove, CA, November 2000.

[12] Eitan Altman and Tania Jimene“NS Beginner” Lecture notes,2003-

2004,university de Los Andes,Merida venazuela and ESSI December4,2003.

S.No. Parameter change Packet
Received

Packet Loss

1 Bandwidth 416 206

2 Bandwidth 372 256

3 Bandwidth 336 328

4 Queue size 303 394

5 Queue size 320 360

6 Queue size 829 80

7 Transmission
delay

829 No

8 Transmission
delay

829 No

9 Transmission
delay

829 No

1648

IJSER

http://www.ijser.org/

	1 Introduction
	4. Implementation of Queue Management
	4. SIMULATION Environment
	5. Result and Discussion
	4. CONCLUSION
	References

